About the Origin of Cities

A. de Palma¹ Y. Papageorgiou² J.-F. Thisse³ P. Ushchev⁴

December 2018

¹Ecole Normale Superieure
²McMaster University
³CORE, UCL, HSE, and CEPR
⁴HSE and Monash University

de Palma, Papageorgiou, Thisse, Ushchev

Origin of Cities

December 2018 1/28

Systems of cities and urban hierarchies

- Despite big variations in the natural landscape, urban systems exhibit strikingly regular hierarchical structures
 - Marshall (1989); Hsu (2012), Hsu et al. (2014)
- Question 1:

What makes these structures to emerge?

• Question 2:

How can these structures be rationalized?

• Answers: two competing theories

Systems of cities and urban hierarchies

- Despite big variations in the natural landscape, urban systems exhibit strikingly regular hierarchical structures
 - Marshall (1989); Hsu (2012), Hsu et al. (2014)
- Question 1:

What makes these structures to emerge?

• Question 2:

How can these structures be rationalized?

• Answers: two competing theories

Systems of cities and urban hierarchies

- Despite big variations in the natural landscape, urban systems exhibit strikingly regular hierarchical structures
 - Marshall (1989); Hsu (2012), Hsu et al. (2014)
- Question 1:

What makes these structures to emerge?

• Question 2:

How can these structures be rationalized?

• Answers: two competing theories

Central place theory (Christaller, 1933; Lösch, 1940):

- Makes strong predictions on spatial distribution of economic activities
- Problem: lacks solid micro-foundations 😊

New economic geography (Krugman, 1991; Fujita et al., 1999):

- Relies on a full-fledged general equilibrium setup
- Problem: two-region setting \implies no urban hierarchy \bigcirc

Wanted: a reconciliation

• Provide a bare–bones spatial framework generating:

- either equally-spaced and equally-sized central places
- or a hierarchy of central places
- Derive spatial patterns from individual decisions based on:
 - preferences of agents
 - efficiency of communication technologies
- One type of agents \implies periodic distribution of cities
- Two types of agents \implies urban hierarchy

• Provide a bare–bones spatial framework generating:

- either equally-spaced and equally-sized central places
- or a hierarchy of central places
- Derive spatial patterns from individual decisions based on:
 - preferences of agents
 - efficiency of communication technologies
- One type of agents \implies periodic distribution of cities
- Two types of agents \implies urban hierarchy

Homogeneous world: one type of agents

- Space is assumed to be:
 - one-dimensional
 - featureless
 - unbounded
- We represent the space as the real line \mathbb{R} with locations $x, y \in \mathbb{R}$
- There is a continuum of agents distributed over $\mathbb R$
- All agents are identical in that they conduct the same type of activity
- The population density $n(x) \ge 0$ satisfies the following condition:

$$\overline{n} \equiv \lim_{b \to \infty} \left[\frac{1}{2b} \int_{-b}^{b} n(x) \mathrm{d}x \right] < \infty$$

- Two opposing forces:
 - benefits from communication centripetal force
 - cost of congestion centrifugal force
- Linear utility function:

$$u(x) = E(x) - \alpha n(x)$$

- E(x) = spatial externality (to be explained below)
- n(x) = population density at the place x of agent's residence
- α = congestion cost per unit of population density ($\alpha > 0$)

Spatial externality

- Agents are embedded into a social interaction field
 - see, e.g., Jackson et al. (2017)
- Social interaction decays with distance:

Interaction between x and $y = \varphi(|x - y|), \quad \varphi'(\cdot) < 0$

• Interaction flow from *y* to *x*:

$$\varphi(|x-y|)n(y)$$

• Spatial externality is my total interaction with all the others:

$$E(x) \equiv \int_{\mathbb{R}} \varphi(|x-y|) n(y) \mathrm{d}y$$

Distance decay function

• Assume that distance decay of social interaction is exponential:

$$\varphi(|x-y|) = \exp\left\{-\beta |x-y|\right\}$$

- This specification has been widely used in the literature:
 - Fujita and Ogawa (1982)
 - Lucas and Rossi-Hansberg (2002)
 - Desmet and Rossi-Hansberg (2013)
- The parameter $\beta > 0$ is a measure of spatial frictions
- When *x* and *y* are close to each other, we have:

$$\exp\left\{-\beta\left|x-y\right|\right\}\approx 1-\beta\left|x-y\right|$$

• Equilibrium \iff agents have the same utility level u^* at all locations:

$$u(x) = u^*$$
 for all $x \in \mathbb{R}$

- Intuition: equilibrium is an outcome when nobody wants to move
- Linear utility and exponential distance decay yield:

$$n(x) = \frac{1}{\alpha} \left[\int_{\mathbb{R}} \exp \left\{ -\beta |x-y| \right\} n(y) dy - v^* \right]$$

- This equation is:
 - a linear integral equation
 - known as the Fredholm equation of 2nd kind

- Two sources of spatial frictions:
 - disutility α of congestion
 - inefficiency β of communication technology
- We merge the two into a sole parameter:

$$\phi \equiv \frac{2}{\alpha\beta}$$

• Intuitively, ϕ is an inverse measure of spatial frictions

Proposition 1:

• $\phi \leq 1 \implies$ only uniform equilibrium

Proposition 2:

•
$$\phi > 1 \implies$$
 non-uniform equilibria:
$$n^*(x) = \overline{n} + A \sin\left(\beta \sqrt{\phi - 1} x\right), \qquad |A| \le \overline{n}$$

Equidistant equal-sized settlements $\iff \phi > 1$

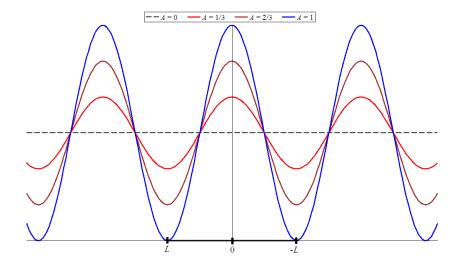


Image: A matrix

▶ < ∃ ▶

Proposition 3. When $\phi > 1$, there exists a unique stable spatial equilibrium given by

$$n^*(x) = \overline{n} \left[1 + \sin \left(\beta \sqrt{\phi - 1} x \right) \right]$$

Does theory meet historical evidence?

- Early times: $\phi < 1$ was satisfied
- People remained dispersed because:
 - land could not support agglomeration
 - encounter with strangers was dangerous
- Gradually, the world became uneven:
 - food production \implies higher land returns $\implies \alpha \downarrow$
 - specialization \implies need to interact closer $\implies \beta \downarrow$
- Lower spatial frictions $\implies \phi > 1 \implies \text{CENTRAL PLACES}!$

Welfare

Proposition 4.

• Equilibrium welfare level:

$$u^* = \overline{n}\left(\frac{2}{\beta} - \alpha\right)$$

- Urbanization-enhancing shock = welfare-enhancing shock!
 - living together is less costly $\implies \alpha \downarrow \implies u^* \uparrow$
 - transportation improvement $\implies \beta \downarrow \implies u^* \uparrow$
- Higher average population \overline{n} per unit of land:

Welfare increases/decreases
$$\iff \phi \ge 1$$

Image: A matrix

A model with two types of agents

Two types of agents

- Assume now that there are two populations of agents
- For example, these can be:
 - hunters and gatherers
 - farmers and artisans
 - firms and consumers
- Agents differ across not within! populations in:
 - preferences
 - communication technologies
- Each agent:
 - gains from communication with agents of both types
 - suffers from congestion with agents of both types

• Density of population *j*:

$$n_j(x) \ge 0, \qquad j=1,2$$

• Spatial externality a *j*-type agent at $x \in \mathbb{R}$ receives from *k*-type agents:

$$E_{jk}(x) \equiv \int_{-\infty}^{\infty} \exp\{-\beta_{jk}|x-y|\}n_k(y)dy$$

• Utility of a *j*-type agent:

$$u_j(x) = \gamma_{jj} E_{jj}(x) + \gamma_{jk} E_{jk}(x) - \alpha_{jj} n_j(x) - \alpha_{jk} n_k(x)$$

• Population-specific preferences are now captured by twelve parameters:

$$\alpha_{jk} > 0, \quad \beta_{jk} > 0, \quad \text{and} \quad \gamma_{jk} > 0, \qquad j, k = 1, 2$$

Consider the following quasi-symmetric case:

• Each agent only gets congested with her own people:

$$\alpha_1 \equiv \alpha_{11} > 0, \qquad \alpha_2 \equiv \alpha_{22} > 0, \qquad \alpha_{12} = \alpha_{21} = 0$$

• Same intensity of the spatial externality:

$$\beta \equiv \beta_{11} = \beta_{12} = \beta_{21} = \beta_{22} > 0$$

• Same communication preferences within and across populations:

$$\gamma_{11} = \gamma_{22} = 1, \qquad \gamma \equiv \gamma_{12} = \gamma_{21} > 0$$

Proposition 5. Assume a quasi-symmetric world in which $\gamma < 1$, i.e. each agent prefers interacting with her own people. Then:

- high spatial impedance $\beta \Longrightarrow$ only uniform equilibrium
- intermediate spatial impedance $\beta \Longrightarrow$ central places of the same size
- low spatial impedance $\beta \implies$ urban hierarchy: non-uniform equilibria with central places of different sizes

Let **D** be a (4×4) -matrix independent of x defined as follows:

$$\mathbf{D} \equiv \mathbf{Q} - 2\mathbf{B}\mathbf{A}^{-1}\mathbf{\Gamma},$$

where

$$\mathbf{Q} \equiv \begin{pmatrix} \beta_{11}^2 & 0 & 0 & 0 \\ 0 & \beta_{12}^2 & 0 & 0 \\ 0 & 0 & \beta_{21}^2 & 0 \\ 0 & 0 & 0 & \beta_{22}^2 \end{pmatrix}, \quad \mathbf{B} \equiv \begin{pmatrix} \beta_{11} & 0 \\ 0 & \beta_{12} \\ \beta_{21} & 0 \\ 0 & \beta_{22} \end{pmatrix}$$
$$\mathbf{\Gamma} \equiv \begin{pmatrix} \gamma_{11} & \gamma_{12} & 0 & 0 \\ 0 & 0 & \gamma_{21} & \gamma_{22} \end{pmatrix}, \qquad \mathbf{A} \equiv \begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix}$$

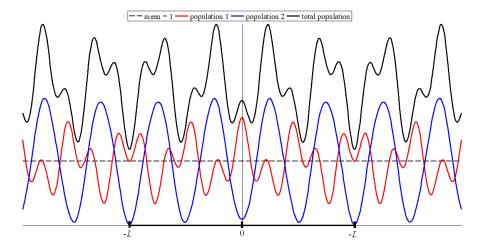
< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition 6.

- D has no strictly negative real eigenvalues \implies only uniform equilibrium
- D has one strictly negative real eigenvalue \implies equidistant equally sized central places
- D has at least two strictly negative real eigenvalues \implies spatial equilibria involve different extrema

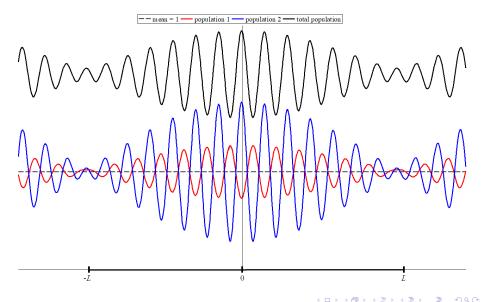
Urban hierarchy: illustrations

Population densities in a quasi-symmetric world

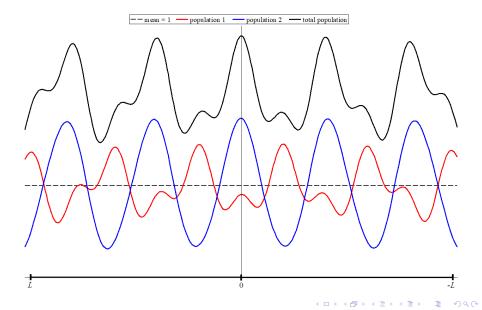


- ₹ 🖹 🕨

Christaller-like population densities



The "Big Five" in a heterogeneous world



Thank you for your attention!